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Abstract: A general class of stochastic volatility model is considered for modeling risky asset. This class of
stochastic volatility model contains most of those without jump component which are commonly used in research.
We obtain the minimal martingale measure and locally risk minimizing hedging strategy in these models, and
employ the results to the unit-linked life insurance contracts. Moreover, we also investigate the locally risk min-
imizing hedging strategy for unit-linked life insurance contracts in a Barndorff-Nielsen and Shephard stochastic
volatility model.
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1 Introduction
In the well known Black-Scholes model, volatility is
assumed to be constant, but this hypothesis is far from
being realistic, it does have known biases. Two em-
pirical phenomenons have received much attention re-
cently: the asymmetric leptokurtic features and the
volatility smile. We know, if the Black-Scholes model
is correct, then the implied volatility should be con-
stant. In reality, it is widely known that the implied
volatility curve resembles a ”smile”. Over the past
decades, some different models are also provided to
incorporate the ”volatility smile” in option pricing.
For example, Scott [6], Hull and White [3], Wiggins
[2], Heston [12] and so on. In this paper, we consider
a finance market with a risky asset and a risk-free as-
set. The price process of the risky asset follows a gen-
eral class of stochastic volatility model, since there
are more than one source of randomness, the finance
market is incomplete. In a complete market, a contin-
gent claim can be replicated perfectly by a portfolio of
risk free bonds and the underlying asset. In an incom-
plete market, however, such a replication is not pos-
sible, we have to choose some approaches to hedge
derivatives . In this paper, we shall use the criterion
of risk minimization. The risk minimization concept
first discussed in Föllmer and Sondermann [1] when
the asset price process is a martingale under the em-
pirical measure. This local risk minimization concept
was introduced in Schweizer [8]. Møller [13] con-
sidered a model describing the uncertainty of the fi-
nancial market and a portfolio of insured individuals

simultaneously, the risk-minimizing trading strategies
and the associated intrinsic risk processes are deter-
mined for different types of unit-linked life insurance
contracts. Chan [14] found a locally risk minimizing
strategy when the price process was driven by a gen-
eral Lévy process. Riesner [7] extended the Møller
’s model in [13], supposed that the risky asset price
process was discontinuous as it followed a geometric
lévy process, and obtained the risk minimizing hedg-
ing strategy of life insurance contracts in a lévy pro-
cess financial market. However, Vandaele and Van-
maele [10] pointed out that the result of Riesner [7]
was not correct, and found that the risk minimizing
hedging strategy was not the locally risk minimizing
hedging strategy under the original measure. Bi and
Guo [5] also considered the risk minimizing hedg-
ing problem for unit-linked life insurance contracts
in a financial market driven by a shot-noise process.
However, the above research papers haven’t involved
stochastic volatility models. In this paper, we suppose
that the risky asset follows a general class of stochas-
tic volatility model, and obtain a locally risk mini-
mizing hedging strategy for unit-linked life insurance
contracts.

The outline of this paper is as follows: the model
is developed in Section 2. Then the third section states
a review of risk minimizing. The main theorem is
derived in Section 4. Employing the results of Sec-
tion 4, the locally risk minimizing hedging strategy of
unit-linked life contracts is presented in Section 5. In
Section 6, we derive a locally risk minimizing hedg-
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ing strategy for unit-linked life insurance contracts in
a Barndorff-Nielsen and Shephard stochastic volatil-
ity model. Conclusions are stated in Section 7.

2 The model
In this section, the two basis elements of the model,
the financial market and a portfolio of individuals to
be insured, are introduced. Let the probability space(
Ω1,G, (Gt)(0≤t≤T ), P1

)
denote the financial market

and
(
Ω2,H, (Ht)(0≤t≤T ), P2

)
be used to describe the

insurance portfolio. Define
(
Ω,F , (Ft)(0≤t≤T ), P

)
as

a product space of the above two independent proba-
bility space. Moreover, the probability space is sup-
posed to satisfy the usual conditions of right continu-
ity and completeness.

2.1 The financial market
We consider a continuous time model with two pri-
mary traded assets, namely a stock with price pro-
cess S = (St)0≤t≤T and a bank account with price
process B = (Bt)0≤t≤T . The asset price pro-
cesses are defined on a complete probability space(
Ω, (Gt)(0≤t≤T ), P1

)
and are given by as following

dBt = rtBtdt,

dSt = µtStdt+ Stf(Yt)dW̃
1
t , (1)

dYt = g(Yt)dt+ h(Yt)dW̃
2
t , (2)

for 0 ≤ t ≤ T , where f , g and h are measurable Lips-
chitz functions, µt and rt are time-dependent, strictly
positive and deterministic, W̃ 1

t ,W̃ 2
t are two standard

Brownian motions and Cov(dW̃ 1
t , dW̃

2
t ) = ρdt, here,

we assume that ρ ∈ (−1, 1). In this paper, we con-
sider a general class of stochastic volatility model,
which contains most of stochastic volatility models
without jump component. For example, if f(y) =
y, g(y) = 0, h(y) = σ, ρ = 0, then this stochastic
volatility model reduces to Hull/White [3] volatility
model; if f(y) =

√
y, g(y) = k(θ − y), h(y) =

σ
√
y, this stochastic volatility model becomes Hes-

ton [12] volatility model. Let S̃t denote the discount
risky asset price process, it means S̃t = Ste

−
∫ t
0 rudu.

Moreover, we define Mt =
∫ t
0 S̃uf(Yu)dW̃

1
u and

At =
∫ t
0 (µu − ru)S̃udu. Notice that M is the lo-

cal martingale part of S and A is its predictable part.
We assume that EP1

[∫ t
0 S̃

2
uf

2(Yu)du
]

< ∞ and

EP1

[∫ t
0 S̃

2
u(µu − ru)

2du
]

< ∞ for 0 ≤ t ≤ T ,
where EP1 [·] denotes the expectation under the statis-
tic probability measure P1. Hence, S̃ becomes a

square integrable semi-martingale with decomposi-
tion S̃t = Mt + At. Since EP1

[∫ t
0 S̃

2
uf

2(Yu)du
]
<

∞ for 0 ≤ t ≤ T , then Mt is not only a local martin-
gale but also a square integrable martingale and At is
an increasing process.

2.2 The insurance portfolio
The insurance market is described on the probabil-
ity space

(
Ω,H, (Ht)(0≤t≤T ), P2

)
, where the filtra-

tion (Ht)(0≤t≤T ) is the natural filtration generated by
I{Ti≤t} with i = 1, 2, ..., N . The number N denotes
the number of individuals all of equal age x and with
i.i.d nonnegative lifetimes T1, T2, ..., TN . Their haz-
ard rate µx+τ is given by

tPx = P2 (T1 > x+ t|T1 > x)

= exp

{
−
∫ t

0
µx+τdτ

}
. (3)

The number of deaths until time t is denoted by N I
t =∑N

i=1 I{Ti≤t} for 0 ≤ t ≤ T . In addition, we assume
that the P2 martingale M I = (M I

t )0≤t≤T is defined
as

M I
t = N I

t −
∫ t

0
λudu, (4)

where λt = (N −N I
t )µx+t.

3 A review of risk minimization
In this section we will introduce the definitions and
notations of risk minimization, for all unexplained no-
tations we refer the reader to Schweizer [9] and Jacod
and Shiryaev [4].

Definition 1 A couple φ = (ξ, η) is called a strat-
egy if ξ is a predictable process and ∥ξ∥L2(S) =(
EP

[∫ T
0 ξ2ud[S̃]u

]) 1
2

< ∞, η is an adapted pro-

cess and V = ξS̃ + η has right continuous paths and
EP [V

2
t ] < ∞ for every t ∈ [0, T ], where P is the

statistic probability measure.

Definition 2 A martingale measure Q̂ which is equiv-
alent to the statistical measure P will be called mini-
mal if

Q̂ = P on F0

and if any square-integrable P martingale that is or-
thogonal to the martingale part M of the semimartin-
gale S under P remains a martingale under Q̂.
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We define the cost process of a trading strategy
via

Ct(φ) = Vt −
∫ t

0
ξsdS̃s.

Note that a strategy is self-financing if and only if the
cost process is constant.

Definition 3 A strategy φ is called pseudo locally
risk-minimizing if the associated cost process C(φ)
is a martingale under P , and orthogonal to the mar-
tingale part M of the semi-martingale S.

Lemma 4 Assume that the semi-martingale S sat-
isfy the following conditions, then the pseudo locally
risk-minimizing strategy φ is a locally risk-minimizing
strategy.

(A1): < M > should be P -almost surely strictly
increasing on the whole interval [0, T ];

(A2): A is P -almost surely continuous;
(A3): A is absolutely continuous with respect to <

M > with a density α satisfying EP

[
|α| log+ |α|

]
<

∞, where M is the martingale part of the discount
asset price process S̃ in the canonical decomposition
under P .

For (A3), a sufficient condition is that
EP [< αdM >] < ∞. The interesting readers
can see it in Schweizer [9] or Vandaele and Vanmaele
[10].

Definition 5 The residual process of φ is defined by
Rt(φ) = EP

[
(CT (φ)− Ct(φ))

2
∣∣∣Ft

]
.

4 Minimal martingale measure and
locally risk minimizing hedging
strategy

We shall consider the problem of hedging a con-
tingent claim. Since S is the only traded as-
set in the model, and Y is not traded, then our
market is incomplete, we have to add some crite-
rion to determine hedging strategies. In this pa-
per, we will use the criterion of risk minimiza-
tion. Suppose that Ψ(ST ) is a FT measure claim
for which supt∈[0,T ]EQ

[(
B−1

t Ψ(St)
)2]

< ∞,
where Q is a risk-neutral martingale measure. Ac-
cording to risk-neutral valuation, the arbitrage-free
price Φ(t, St, Yt) of the claim Ψ(ST ) is given by
EQ

[
BtB

−1
T Ψ(ST )|Ft

]
for 0 ≤ t ≤ T .

Since the financial market is incomplete, there are
infinite equivalent martingale measures, we first pro-
vide a general equivalent probability measure which
is described by the following Girsanov density:

dQ

dP1

∣∣∣
Ft

= Dt = 1 +

∫ t

0
DuG(u, Su, Yu)dW̃

1
u

+

∫ t

0
DuH(u, Su, Yu)dW̃

2
u . (5)

Using Girsanov’s theorem, we have that under the
risk-neutral measure Q

W 1
t = W̃ 1

t −
∫ t

0
G(u, Su, Yu)du

− ρ

∫ t

0
H(u, Su, Yu)du, (6)

W 2
t = W̃ 2

t −
∫ t

0
H(u, Su, Yu)du

− ρ

∫ t

0
G(u, Su, Yu)du, (7)

are two standard Brownian motions, in addition
Cov(dW 1

t , dW
2
t ) = ρdt. Therefore, S̃t can be ex-

pressed as

dS̃t = (µt − rt)S̃tdt+ S̃tf(Yt)dW
1
t + S̃tf(Yt)

× G(t, St, Yt)dt+ ρS̃tf(Yt)H(t, St, Yt)dt. (8)

Then, for all 0 ≤ t ≤ T , S̃t is a Q martingale if and
only if the following condition is satisfied

µt + f(Yt)G(t, St, Yt) + ρf(Yt)H(t, St, Yt) = rt. (9)

Hence, under the measure Q, risky asset price process
St satisfies the following

dS̃t = S̃tf(Yt)dW
1
t .

From the above Eq.(9), we know that G(t, St, Yt) and
H(t, St, Yt) are not unique. In the following, we will
obtain an especially equivalent martingale measure,
the minimal martingale measure. Before the problem
is discussed, we first consider an optimal hedge risk
strategy. In what follows, we provide the locally risk
minimizing strategy, first show the following theorem.

Theorem 6 Let Vt = EQ

[
B−1

T Ψ(ST )
∣∣∣Ft

]
=

B−1
t Φ(t, St, Yt), then

Vt = V0 +

∫ t

0
Φx(u, Su, Yu)S̃uf(Yu)dW

1
u

+

∫ t

0
B−1

u Φy(u, Su, Yu)h(Yu)dW
2
u , (10)
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where Φt(t, St, Yt), Φx(t, St, Yt), Φy(t, St, Yt) denote
the first derivative of Φ(t, St, Yt) with respect to vari-
able t, St and Yt respectively, Φxx(t, St, Yt) denotes
the second derivative of Φ(t, St, Yt) with respect to
variable St, Φxy(t, St, Yt) denotes the second mixed
derivative of Φ(t, St, Yt) with respect to variable St

and Yt.

Proof: Using the Itô’s formula, we get

dVt = −rtB−1
t Φ(t, St, Yt)dt+B−1

t Φt(t, St, Yt)dt

+ B−1
t Φx(t, St, Yt)dSt +B−1

t Φy(t, St, Yt)dYt

+
1

2
B−1

t Φxx(t, St, Yt)d < S >t

+
1

2
B−1

t Φyy(t, St, Yt)d < Y >t

+ B−1
t Φxy(t, St, Yt)d < S, Y >t

= −rtB−1
t Φ(t, St, Yt)dt+B−1

t Φt(t, St, Yt)dt

+ B−1
t Φx(t, St, Yt)

(
Stf(Yt)dW̃

1
t + µtStdt

)
+ B−1

t Φy(t, St, Yt)
(
h(Yt)dW̃

2
t + g(Yt)dt

)
+

1

2
B−1

t Φxx(t, St, Yt)S
2
t f

2(Yt)dt

+
1

2
B−1

t Φyy(t, St, Yt)h
2(Yt)dt

+ B−1
t Φxy(t, St, Yt)ρStf(Yt)h(Yt)dt,

together with equations (6) and (7), we may write

dVt = −rtB−1
t Φ(t, St, Yt)dt+B−1

t Φt(t, St, Yt)dt

+ B−1
t Φx(t, St, Yt)Stf(Yt)dW

1
t

+ B−1
t Φx(t, St, Yt)Stf(Yt)(G(t, St, Yt)

+ ρH(t, St, Yt))dt+B−1
t Φy(t, St, Yt)h(Yt)dW

2
t

+ B−1
t Φy(t, St, Yt)h(Yt)(H(t, St, Yt)

+ ρG(t, St, Yt))dt+B−1
t Φx(t, St, Yt)µtStdt

+ B−1
t Φy(t, St, Yt)g(Yt)dt

+
1

2
B−1

t Φxx(t, St, Yt)S
2
t f

2(Yt)dt

+
1

2
B−1

t Φyy(t, St, Yt)h
2(Yt)dt

+ B−1
t Φxy(t, St, Yt)ρStf(Yt)h(Yt)dt.

Again, since Vt is a martingale, finally we obtain

Φt(t, St, Yt) + Φx(t, St, Yt)µtSt +Φy(t, St, Yt)g(Yt)

+ Φx(t, St, Yt)Stf(Yt)(G(t, St, Yt) + ρH(t, St, Yt))

+ Φy(t, St, Yt)h(Yt)(H(t, St, Yt) + ρG(t, St, Yt))

+
1

2
Φxx(t, St, Yt)S

2
t f

2(Yt) +
1

2
Φyy(t, St, Yt)h

2(Yt)

+ Φxy(t, St, Yt)ρStf(Yt)h(Yt) = rtΦ(t, St, Yt). (11)

Therefore, by the above equation, the proof is com-
pleted. �

From the Definition 3, and suppose that φu =
(ξu, ηu) is pseudo-locally risk minimizing strategy.
Let

Lt = Vt − V0 −
∫ t

0
ξudS̃u = Ct(φ)− V0, (12)

then Lt must satisfy the following two conditions
◦ Lt is a P1 martingale;

◦ Lt is orthogonal to Mt which is a local martingale
part of semimartingale decomposition S̃t.

Theorem 7 Suppose that EP1

[∫ t
0

1
f2(Yu)

du
]

< ∞
for all 0 ≤ t ≤ T , then the locally risk minimizing
hedging strategy φt = (ξt, Vt − ξtS̃t), where

ξt =
S̃tΦx(t, St, Yt)f(Yt)

S̃tf(Yt)

+
ρh(Yt)B

−1
t Φy(t, St, Yt)

S̃tf(Yt)
. (13)

The residual risk Rt(φ) is

Rt(φ)

= EP1

[ ∫ T
t

(
S̃2
uf

2(Yu)(Φx(u, Su, Yu)− ξu)
2

+ B−2
u h2(Yu)Φ

2
y(u, Su, Yu)

+ 2ρB−1
u S̃uf(Yu)h(Yu)(Φx(u, Su, Yu)− ξu)

× Φy(u, Su, Yu)
)
du
∣∣∣Ft

]
.

(14)

Proof: By equations (6), (7), (10) and (12), leads to

Lt = Vt − V0 −
∫ t

0
ξudS̃u

=

∫ t

0
Φx(u, Su, Yu)S̃uf(Yu)dW

1
u

+

∫ t

0
Φy(u, Su, Yu)B

−1
u h(Yu)dW

2
u

−
∫ t

0
ξuS̃uf(Yu)dW

1
u

=

∫ t

0
S̃uf(Yu)(Φx(u, Su, Yu)− ξu)

×
(
dW̃ 1

u − (G(u, Su, Yu) + ρH(u, Su, Yu))du
)

+

∫ t

0
B−1

u h(Yu)Φy(u, Su, Yu)
(
dW̃ 2

u

− (H(u, Su, Yu) + ρG(u, Su, Yu))du
)
. (15)
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Due to φu = (ξu, ηu) is supposed as pseudo locally
risk-minimizing hedging strategy, Lt is P1 martingale,
that is, the drift coefficient of the above equation is 0
at any time t ∈ [0, T ]. It implies that

S̃tf(Yt) (Φx(t, St, Yt)− ξt)
(
ρH(t, St, Yt)

+ G(t, St, Yt)
)
+B−1

t h(Yt)Φy(t, St, Yt)

× (ρG(t, St, Yt) +H(t, St, Yt)) = 0. (16)

Hence

Lt =

∫ t

0
S̃uf(Yu)(Φx(u, Su, Yu)− ξu)dW̃

1
u

+

∫ t

0
B−1

u h(Yu)Φy(u, Su, Yu)dW̃
2
u . (17)

In addition,

Mt =

∫ t

0
S̃uf(Yu)dW̃

1
u ,

combining the Eq.(17) and the above equation, we ob-
tain

[L,M ]t =

∫ t

0
S̃2
uf

2(Yu)(Φx(u, Su, Yu)− ξu)du

+

∫ t

0
ρS̃uB

−1
u f(Yu)h(Yu)Φy(u, Su, Yu)du. (18)

Moreover, using Itô’s formula of integration by parts,
we have

LtMt = L0M0 +

∫ t

0
Ls−dMs

+

∫ t

0
Ms−dLs + [L,M ]t , (19)

then LtMt is a P martingale if and only if at any time
u ∈ [0, T ],

S̃2
uf

2(Yu) (Φx(u, Su, Yu)− ξu) + ρS̃uB
−1
u

× Φy(u, Su, Yu)f(Yu)h(Yu) = 0, P1 − a.s.(20)

Therefore, we have

ξu =

S̃uf(Yu)Φx(u, Su, Yu) + ρB−1
u h(Yu)Φy(u, Su, Yu)

S̃uf(Yu)
.

Now, we prove that for the conditions (A1)-(A3) of
Lemma 4 are satisfied.

◦ A1.

< M >t = <

∫ t

0
S̃uf(Yu)dW̃

1
u >

=

∫ t

0
S̃2
uf

2(Yu)du. (21)

Hence < M >t is P1 almost surely strictly increas-
ing on the whole [0, T ] if and only if S̃2

uYu > 0 for
every u ∈ [0, T ], and this condition is satisfied.

◦ A2. The finite variation part

At =

∫ t

0
S̃u(µu − ru)du (22)

is continuous.

◦ A3. Combining the Eqs.(21) and (22), we can get

λt =
dAt

d < M >t
=

S̃t(µt − rt)dt

S̃2
t f

2(Yt)dt

=
µt − rt

S̃tf2(Yt)
.

Moreover, since EP1

[∫ t
0

1
f2(Yu)

du
]
<∞, then

EP1

[
<

t∫
0

λudMu >

]
= EP1

[
t∫
0

λ2
ud < M >u

]
= EP1

[
t∫
0

(µu−ru)2

f2(Yu)
du

]
<∞.

Now, we will calculate the residual risk process
Rt(φ). From the Definition 3 and equation (12), we
obtain

Rt(φ) = EP1

[
(CT (φ)− Ct(φ))

2
∣∣∣Ft

]
= EP1

[
(LT − Lt)

2
∣∣∣Ft

]
= EP1

[( ∫ T

t
S̃uf(Yu)(Φx(u, Su, Yu)− ξu)dW̃

1
u

+

∫ T

t
B−1

u h(Yu)Φy(u, Su, Yu)dW̃
2
u

)2∣∣∣Ft

]
= EP1

[ ∫ T

t

(
S̃2
uf

2(Yu)(Φx(u, Su, Yu)− ξu)
2

+ B−2
u h2(Yu)Φ

2
y(u, Su, Yu) + 2ρB−1

u S̃uf(Yu)

× h(Yu)(Φx(u, Su, Yu)− ξu)Φy(u, Su, Yu)
)
du
∣∣∣Ft

]
.

Thus, we complete the proof. �
We substitute the Eq.(13) into the Eq.(16), then

leads to the following condition, for all u ∈ [0, T ],

(1− ρ2)B−1
u h(Yu)Φy(u, Su, Yu)H(u, Su, Yu) = 0,

thus H(u, Su, Yu) = 0, for ∀u ∈ [0, T ]. We now re-
call the condition (9) and get G(u, Su, Yu) =

ru−µu

f(Yu)
.
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Theorem 8 Suppose that the condition
EP1

[∫ t
0

1
f2(Yu)

du
]

< ∞ for all 0 ≤ t ≤ T is
satisfied. Let

dQ̂

dP1

∣∣∣
Ft

= Dt = exp
{∫ t

0
G(u, Su, Yu)dW̃

1
u

− 1

2

∫ t

0
G(u, Su, Yu)

2du
}
,

where

G(u, Su, Yu) =
ru − µu

f(Yu)
.

Then, the probability measure Q̂ is the minimal mar-
tingale measure.

Proof: Assuming that Γ is a P1-martingale orthogo-
nal to the martingale part M of the semimartingale S̃.
Since

Dt = 1 +

∫ t

0
DuG(u, Su, Yu)dW̃

1
u ,

we recall that under the measure P , Mt is given by:

Mt =

∫ t

0
S̃uf(Yu)dW̃

1
u ,

then

Dt = 1 +

∫ t

0
Du

ru − µu

S̃uf2(Yu)
dMu.

We can now easily obtain

[Γ, D]t =

∫ t

0
Du

ru − µu

S̃uf2(Yu)
d [Γ,M ]u .

Suppose that the condition EP1

[∫ t
0

1
f2(Yu)

du
]
< ∞

for all 0 ≤ t ≤ T is satisfied, and note that Γ is a P1-
martingale orthogonal to the martingale M , thus Γ is
also orthogonal to the martingale D. It means that
Γ is still a martingale under the measure Q̂. Then,
according to the Definition 2, the measure Q̂ is the
minimal martingale measure. Hence, we complete the
proof. �

5 Locally risk minimizing hedging
strategy for unit-linked contracts

In this section, we employ the results derived in Sec-
tion 4 to the unit-linked life insurance contracts.

5.1 The pure endowment

The total claim for N pure endowment contracts is

H = B−1
T Ψ(ST )

N∑
i=1

I{Ti>T} = B−1
T Ψ(ST )(N −N I

T ).

Let V ∗
t = EQ∗ [H|Ft], where Q∗ = Q̂ × P2, since

the independence of the financial market and the in-
surance portfolio, then

V ∗
t = EQ∗

[
B−1

T Ψ(ST )(N −N I
T )|Ft

]
= EP2

[
(N −N I

T )|Ft

]
EQ̂

[
B−1

T Ψ(ST )|Ft

]
= (N −N I

t )T−tPx+tVt.

By product rule yields

d
(
(N −N I

s )u−sPx+s

)
= −u−sPx+sdM

I
s .

Thus we have

V ∗
T = V ∗

0 +

∫ T

0
(N −N I

s−)T−sPx+sdVs

−
∫ T

0
T−sPx+sVsdM

I
s .

Due to

Vt = V0 + Lt +

∫ t

0
ξudS̃u

and Eq.(17), we can obtain

V ∗
T = V ∗

0 +

∫ T

0
(N −N I

s−)T−sPx+sξsdS̃s

+

∫ T

0
(N −N I

s−)T−sPx+sS̃sf(Ys)

× (Φx(s, Ss, Ys)− ξs)dW̃
1
s

+

∫ T

0
(N −N I

s−)T−sPx+sh(Ys)B
−1
s

× Φy(s, Ss, Ys)dW̃
2
s −

∫ T

0
T−sPx+sVsdM

I
s ,

where M I
s is defined in Section 2.

Therefore, the optimal portfolio invests ξ∗t =
(N − N I

t−)T−tPx+tξt in the risky asset and η∗t =

(N − N I
t )T−tPx+tVt − ξ∗t S̃t in the riskless asset for

0 ≤ t ≤ T , the cost process is

Ct(φ
∗) = V ∗

0 +

∫ t

0
(N −N I

s−)T−sPx+sS̃sf(Ys)

× (Φx(s, Ss, Ys)− ξs)dW̃
1
s

+

∫ t

0
(N −N I

s−)T−sPx+sh(Ys)B
−1
s

× Φy(s, Ss, Ys)dW̃
2
s −

∫ t

0
T−sPx+sVsdM

I
s .
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The residual risk process is given by

Rt(φ
∗) = EP

[ ∫ T

t
(N −N I

s−)
2
T−sP

2
x+s

×
(
f(Y 2

s )S̃
2
s (Φx(s, Ss, Ys)− ξs)

2 + h(Ys)
2B−2

s

× Φ2
y(s, Ss, Ys) + 2ρS̃sf(Ys)h(Ys)B

−1
s Φy(s, Ss, Vs)

× (Φx(s, Ss, Vs)− ξs)
)
ds+

∫ T

t
T−sP

2
x+sV

2
s

× (N −N I
s−)µx+sds

∣∣∣Ft

]
.

5.2 The term insurance

The payment Ψ(u, Su) is time-dependent but we as-
sume that the insurance company only pays out at time
T . Thus the claim for a portfolio of N term insurance
contract is

HT = B−1
T

N∑
i=1

BTB
−1
Ti

Ψ(Ti, STi)I{Ti≤T}

=

∫ T

0
B−1

u Ψ(u, Su)dN
I
u .

Again, we will apply the results of Section 4 to the
term insurance. For the term insurance, Vt = V (t, u),
with V (t, u) = EQ∗

[
B−1

u Ψ(u, Su)|Ft

]
for all t ≤

u ≤ T . Therefore, ξt becomes ξ(t, u) and Lt becomes
L(t, u). Hence

V ∗
t,T = EQ∗ [HT |Ft] =

∫ t

0
B−1

u Ψ(u, Su)dN
I
u

+ EQ∗

[∫ T

t
B−1

u Ψ(u, Su)dN
I
u

∣∣∣Ft

]
=

∫ t

0
B−1

u Ψ(u, Su)dN
I
u +

∫ T

t
V (t, u)

× (N −N I
t )u−tPx+tµx+udu.

Using the Itô’s formula, V ∗
s,T can be rewritten as

dV ∗
s,T = B−1

s Ψ(s, Ss)dN
I
s −B−1

s Ψ(s, Ss)

× (N −N I
s )µx+sds

+

∫ T

s

(
(N −N I

s−)u−sPx+sµx+udu
)
dV (s, u)

+

∫ T

s
V (s, u)d

(
(N −N I

s )u−sPx+s

)
µx+udu.

Since we have

dV (s, u) = ξ(s, u)dS̃s + dL(s, u),

d
(
(N −N I

s )u−sPx+s

)
= −u−sPx+sdM

I
s ,

then

V ∗
t,T = V ∗

0,T +

∫ t

0
B−1

s Ψ(s, Ss)dM
I
s

+

∫ t

0

∫ T

s
(N −N I

s )u−sPx+sµx+uξ(s, u)dudS̃s

+

∫ t

0

∫ T

s
(N −N I

s−)u−sPx+sµx+ududL(s, u)

−
∫ t

0

∫ T

s
V (s, u)u−sPx+sµx+ududM

I
s .

Define

ξ∗(s, T ) =

∫ T

s
(N −N I

s−)u−sPx+sµx+uξ(s, u)du,

K(t, T ) =

∫ t

0
B−1

s Ψ(s, Ss)dM
I
s −

∫ t

0

∫ T

s
V (s, u)

× u−sPx+sµx+ududM
I
s +

∫ t

0

∫ T

s
(N −N I

s )

× u−sPx+sµx+ududL(s, u).

Therefore

V ∗
t,T = V ∗

0,T +

∫ t

0
ξ∗(s, T )dS̃s +K(t, T ). (23)

For 0 ≤ t ≤ T , the unique admissible locally risk
minimizing hedging strategy φ∗(ξ∗, η∗) for the term
insurance is given by

ξ∗(t, T ) =

∫ T

t
(N −N I

t−)u−tPx+tµx+uξ(t, u)du,

η∗(t, T ) =

∫ t

0
B−1

u Ψ(u, Su)dN
I
u +

∫ T

t
V (t, u)

× (N −Nt)u−tPx+tµx+udu− ξ∗(t, T )S̃t.

According to the Definitions 3 and 4, and Eq.(23), the
residual risk process is

Rt,T (φ
∗) = EP

[(
K(T, T )−K(t, T )

)2∣∣∣Ft

]
= EP

[ ∫ T

t

(
B−1

s Φ(s, Ss)−
∫ T

s
V (s, u)

× u−sPx+sµx+udu
)2

(N −N I
s )µx+sds

+

∫ T

t

(∫ T

s
(N −N I

s )u−sPx+sµx+udu

)2

×
(
S̃2
sf

2(Ys)(Φx(s, Ss, Ys)− ξs)
2

+ B−2
s h2(Ys)Φy(s, Ss, Ys)

2 + 2ρB−1
s f(Ys)

× h(Ys)Ss(Φx(s, Ss, Ys)− ξs)Φy(s, Ss, Ys)
)
ds
∣∣∣Ft

]
.
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6 Barndorff-Nielsen and Shephard
stochastic volatility model

In this section, we assume that the risky asset is evolv-
ing according to the stochastic volatility model pro-
posed by Barndorff-Nielsen and Shephard [11], where
the squared volatility is given by a non-Gaussian
Ornstein-Uhlenbeck process:

dSt = (µt + βYt)Stdt+
√

YtStdW̃t (24)
dYt = −λYtdt+ dL(λt) (25)

where β, λ are constant, µt is time-dependent, strictly
positive and deterministic, W̃t is a standard Brow-
nian motion and L(t) is a pure-jump subordinator.
We let {Ft}t≥0 be the completion of the filtration

σ(W̃s, L(λs); s ≤ t) generated by the Brownian mo-
tion and the subordinator such that (Ω,F ,Ft, P ) be-
comes a complete filtered probability space. The
Lévy measure of the subordinator is denoted ν̃(dy)
and satisfies by definition

∫∞
0 min(1, y)ν̃(dy) < ∞.

µ(dy, dt) and ν̃(dy, dt) = ν̃(dy)dt denote the jump
measure and its compensator, respectively. We refer
to Jacod and Shiryaev [4] with respect to the notation
used in this paper. From the Eq.(24), we have the fol-
lowing semi-martingale decomposition

dS̃t = M̄t + Āt, (26)

where S̃ is the discounted asset price process of S and

M̄t =

∫ t

0

√
YuS̃udW̃u, (27)

Āt =

∫ t

0
(µu + βYu − ru)S̃udu.

Since the market is incomplete, there are infinite
equivalent martingale measures, we first define a mar-
tingale measure by the following

dQ̄

dP1
= D̄t = 1 +

∫ t

0
G(u, Su, Yu)D̄udW̃u

+

∫ t

0
(H(u, Su, Yu)− 1) µ̃(dy, du). (28)

By Girsanov’s theorem, under the new measure Q̄, we
know that Wt = W̃t−

∫ t
0 G(u, Su, Yu)du is a standard

Brownian motion and the compensator ν(dy, dt) =
H(t, St, Yt)ν̃(dy)dt. Under the equivalent martingale
measure Q̄, the discounted risky asset price process is
a martingale, we see easier that the following martin-
gale condition holds

µt + βYt − rt +
√

YtG(t, St, Yt) = 0. (29)

Theorem 9 Let Vt = EQ̄

[
B−1

T Ψ(ST )
∣∣∣Ft

]
=

B−1
t Φ(t, St, Yt), then

Vt = V0 +

∫ t

0
B−1

t Φx(u, Su, Yu)
√

YuSudWu

+

∫ t

0

∫ ∞

0
B−1

u

(
Φ(u, Su, Yu− + y)

− Φ(u−, Su−, Yu−)
)
µ̃(dy, du),

where Φt(t, St, Yt), Φx(t, St, Yt), Φy(t, St, Yt) denote
the first derivative of Φ(t, St, Yt) with respect to vari-
able t, St and Yt respcetively, Ψ(ST ) is a FT measure
claim.

Proof: By the Itô’s formula, we obtain

dVt = −rtB−1
t Φ(t, St, Yt)dt+B−1

t Φt(t, St, Yt)dt

+ B−1
t Φx(t, St, Yt)dSt +B−1

t Φy(t, St, Yt)dY
c
t

+
1

2
B−1

t Φxx(t, St, Yt)d < Sc >t

+ B−1
t (Φ(t, St, Yt)− Φ(t−, St−, Yt−))

= −rtB−1
t Φ(t, St, Yt)dt+B−1

t Φt(t, St, Yt)dt

+ B−1
t Φx(t, St, Yt)(µ+ βYt)Stdt

+ B−1
t Φx(t, St, Yt)

√
YtStdW̃t −B−1

t Φy(t, St, Yt)

× λYtdt+
1

2
B−1

t Φxx(t, St, Yt)YtS
2
t dt

+ B−1
t (Φ(t, St, Yt)− Φ(t−, St−, Yt−))

= −rtB−1
t Φ(t, St, Yt)dt+B−1

t Φt(t, St, Yt)dt

+ B−1
t Φx(t, St, Yt)(µ+ βYt)Stdt

+ B−1
t Φx(t, St, Yt)

√
YtSt

(
dW̃t +G(t, St, Yt)dt

)
− B−1

t Φy(t, St, Yt)λYtdt+
1

2
B−1

t Φxx(t, St, Yt)Yt

× S2
t dt+

∫ ∞

0
B−1

t

(
Φ(t, St, Yt− + y)

− Φ(t−, St−, Yt−)
)
µ̃(dy, dt)

+

∫ ∞

0
B−1

t

(
Φ(t, St, Yt− + y)

− Φ(t−, St−, Yt−)
)
(H(t, St, Yt)− 1) ν̃(dy, dt),

where Sc and Y c denote continuous parts of S and Y
respectively.

Then Vt is a martingale only and only if the fol-
lowing condition is satisfied

Φt(t, St, Yt) + Φx(t, St, Yt)(µ+ βYt

+
√
YtG(t, St, Yt))St − Φy(t, St, Yt)λYt

+

∫ ∞

0
(Φ(t, St, Yt− + y)− Φ(t−, St−, Yt−))
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× (H(u, Su, Yu)− 1) ν̃(dy, du)

= rtΦ(t, St, Yt)−
1

2
Φxx(t, St, Yt)YtS

2
t .

Therefore

Vt = V0 +

∫ t

0
B−1

u Φx(u, Su, Yu)
√

YuSudWu

+

∫ t

0

∫ ∞

0
B−1

u

(
Φ(u, Su, Yu− + y)

− Φ(u−, Su−, Yu−)
)
µ̃(dy, du).

�

Theorem 10 The locally risk minimizing strategy
φt = (ξ̄t, Vt − ξ̄tS̃t), where

ξ̄t = Φx(t, St, Yt). (30)

The residual risk Rt(φ) is

Rt(φ) = EP1

[ ∫ T

t

∫ ∞

0
B−2

u

(
Φ(u, Su, Yu− + y)

− Φ(u−, Su−, Yu−)
)2

ν̃(dy)du
∣∣∣Ft

]
. (31)

Proof:

L̄t = Vt − V0 −
∫ t

0
ξ̄udS̃u

=

∫ t

0
Φx(u, Su, Yu)

√
YuS̃udWu +

∫ t

0

∫ ∞

0
B−1

u

×
(
Φ(u, Su, Yu− + y)− Φ(u−, Su−, Yu−)

)
µ̃(dy, du)

−
∫ t

0
ξ̄u

[
(µu + βYu − ru) S̃udu+

√
YuS̃udW̃u

]
=

∫ t

0

(
Φx(u, Su, Yu)− ξ̄u

)√
YuS̃udW̃u

+

∫ t

0

∫ ∞

0
B−1

u

(
Φ(u, Su, Yu− + y)

− Φ(u−, Su−, Yu−)
)
(µ(dy, du)− ν̃(dy, du))

+

∫ t

0

∫ ∞

0
(H(u, Su, Yu)− 1)

(
Φ(u, Su, Yu− + y)

− Φ(u−, Su−, Yu−)
)
B−1

u P1(dy, du)

−
∫ t

0
Φx(u, Su, Yu)

√
YuS̃uG(u, Su, Yu)du

−
∫ t

0
ξ̄u (µu + βYu − ru) S̃udu.

We find that if we want L̄ to be a martingale under P ,
the drift term of L should be zero:

0 =

∫ ∞

0

(
Φ(u, Su, Yu− + y)− Φ(u−, Su−, Yu−)

)
× B−1

u (H(u, Su, Yu)− 1) ν̃(dy)− Φx(u, Su, Yu)

×
√

YuS̃uG(u, Su, Yu)− ξ̄u (µu + βYu − ru) S̃u.(32)

Thus

L̄t =

∫ t

0

(
Φx(u, Su, Yu)− ξ̄u

)√
YuS̃udW̃u

+

∫ t

0

∫ ∞

0
B−1

u

(
Φ(u, Su, Yu− + y)

− Φ(u−, Su−, Yu−)
)
(µ(dy, du)− ν̃(dy, du)) .

Combined the above formula and the Eq.(26), we get[
L̄, M̄

]
t
=

∫ t

0

(
Φx(u, Su, Yu)− ξ̄u

)
YuS̃

2
udu,

Finally, we recall that Definition 3 and obtain ξ̄u =
Φx(u, Su, Yu). Furthermore we obtain that the resid-
ual risk process is given by:

Rt(φ) = EP1

[
(CT (φ)− Ct(φ))

2
∣∣∣Ft

]
= EP1

[(
L̄T − L̄t

)2 ∣∣∣Ft

]
= EP1

[{∫ T

t

(
Φx(u, Su, Yu)− ξ̄u

)√
YuS̃udW̃u

+

∫ T

t

∫ ∞

0
B−1

u

(
Φ(u, Su, Yu− + y)

− Φ(u−, Su−, Yu−)
)
(µ(dy, du)− ν̃(dy, du))

}2∣∣∣Ft

]
= EP1

[ ∫ T

t

{
S̃2
uYu(Φx(u, Su, Yu)− ξ̄u)

2

+

∫ ∞

0
B−2

u

(
Φ(u, Su, Yu− + y)

− Φ(u−, Su−, Yu−)
)2

ν̃(dy)
}
du
∣∣∣Ft

]
= EP1

[ ∫ T

t

∫ ∞

0
B−2

u

(
Φ(u, Su, Yu− + y)

− Φ(u−, Su−, Yu−)
)2

ν̃(dy)du
∣∣∣Ft

]
.

Hence, we complete the proof of above theorem. �
Now recall the condition (29) and get

G(u, Su, Yu) = ru−βYu−µu√
YuS̃u

. We substitute it

into the Eq.(32), then leads to the following condition∫ ∞

0
B−1

u

(
Φ(u, Su, Yu− + y)− Φ(u−, Su−, Yu−)

)
× (H(u, Su, Yu)− 1) ν̃(dy) = 0, ∀u ∈ [0, T ],
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thus H(u, Su, Yu) = 1, ∀u ∈ [0, T ].
In the following, we consider the locally risk min-

imizing hedging strategy of unit-linked life contracts
when volatility satisfies Barndorff-Nielsen and Shep-
hard volatility model. We will adopt the similar pro-
cedure of Section 5.

For the pure endowment, we can get

V ∗
T = V ∗

0 +

∫ T

0
(N −N I

s−)T−sPx+sdVs

−
∫ T

0
T−sPx+sVsdM

I
s

= V ∗
0 +

∫ T

0
(N −N I

s−)T−sPx+sξ̄sdS̃s

+

∫ T

0
(N −N I

s−)T−sPx+sdL̄s

−
∫ T

0
T−sPx+sVsdM

I
s .

Then the optimal portfolio invests ξ̄∗t = (N −
N I

t−)T−tPx+tξ̄t in the risky asset and η̄∗t = (N −
N I

t )T−tPx+tVt − ξ̄∗t S̃t in the riskless asset for 0 ≤
t ≤ T , the cost process is

Ct(φ̄
∗) = V ∗

0 +

∫ t

0
(N −N I

s−)T−sPx+sdL̄s

−
∫ t

0
T−sPx+sVsdM

I
s .

As to the term insurance, Vt = V (t, u), with
V (t, u) = EQ∗

[
B−1

u Ψ(u, Su)|Ft

]
for all t ≤ u ≤

T . Therefore, ξt becomes ξ(t, u) and Lt becomes
L(t, u). We can obtain, for 0 ≤ t ≤ T , the unique
admissible locally risk minimizing hedging strategy
φ̄∗(ξ̄∗, η̄∗) for the term insurance is given by

ξ̄∗(t, T ) =

∫ T

t
(N −N I

t−)u−tPx+tµx+uξ̄(t, u)du,

η̄∗(t, T ) =

∫ t

0
B−1

u Ψ(u, Su)dN
I
u +

∫ T

t
V (t, u)

× (N −Nt)u−tPx+tµx+udu− ξ̄∗(t, T )S̃t.

7 Conclusion
We have discussed a general class of stochastic
volatility model which contains most of those without
jump component. The market considered is incom-
plete, we studied a locally risk-minimization strategy
of unit-linked life insurance contracts. Furthermore,
we also investigate the locally risk minimizing hedg-
ing strategy for unit-linked life insurance contracts in

a Barndorff-Nielsen and Shephard stochastic volatil-
ity model.
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